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Abstract
Deep pretrained language models have
achieved great success in the way of pretrain-
ing first and then fine-tuning. But such a
sequential transfer learning paradigm often
confronts the catastrophic forgetting problem
and leads to sub-optimal performance. To
fine-tune with less forgetting, we propose a
recall and learn mechanism, which adopts
the idea of multi-task learning and jointly
learns pretraining tasks and downstream tasks.
Specifically, we introduce a Pretraining Sim-
ulation mechanism to recall the knowledge
from pretraining tasks without data, and
an Objective Shifting mechanism to focus
the learning on downstream tasks gradually.
Experiments show that our method achieves
state-of-the-art performance on the GLUE
benchmark. Our method also enables BERT-
base to achieve better average performance
than directly fine-tuning of BERT-large. Fur-
ther, we provide the open-source RECADAM
optimizer, which integrates the proposed
mechanisms into Adam optimizer, to facility
the NLP community.1

1 Introduction

Deep Pretrained Language Models (LMs), such
as ELMo (Peters et al., 2018) and BERT (Devlin
et al., 2019), have significantly altered the land-
scape of Natural Language Processing (NLP), and
a wide range of NLP tasks has been promoted by
these pretrained language models. These successes
are mainly achieved through Sequential Transfer
Learning (Ruder, 2019): pretrain a language model
on large-scale unlabeled data and then adapt it to
downstream tasks. The adaptation step is usually
conducted in two manners: fine-tuning or freez-
ing pretrained weights. In practice, fine-tuning is
adopted more widely due to its flexibility (Phang
et al., 2018; Peters et al., 2019; Lan et al., 2020).

1https://github.com/Sanyuan-Chen/RecAdam

Despite the great success, sequential transfer
learning of deep pretrained LMs is prone to catas-
trophic forgetting during the adaptation step. Catas-
trophic forgetting is a common problem for se-
quential transfer learning, and it happens when a
model forgets previously learned knowledge and
overfits to target domains (McCloskey and Co-
hen, 1989; Kirkpatrick et al., 2017). To remedy
the catastrophic forgetting in transferring deep pre-
trained LMs, existing efforts mainly explore fine-
tuning tricks to forget less. ULMFiT (Howard and
Ruder, 2018) introduced discriminative fine-tuning,
slanted triangular learning rates, and gradual un-
freezing for LMs fine-tuning. Lee et al. (2020)
reduced forgetting in BERT fine-tuning by ran-
domly mixing pretrained parameters to a down-
stream model in a dropout-style.

Instead of learning pretraining tasks and down-
stream tasks in sequence, Multi-task Learning
learns both of them simultaneously, thus can in-
herently avoid the catastrophic forgetting prob-
lem. Xue et al. (2019) tackled forgetting in au-
tomatic speech recognition by jointly training the
model with previous and target tasks. Kirkpatrick
et al. (2017) proposed Elastic Weight Consolidation
(EWC) to overcome catastrophic forgetting when
continuous learning multiple tasks by adopting the
multi-task learning paradigm. EWC regularizes
new task training by constraining the parameters
which are important for previous tasks and adapt
more aggressively on other parameters. Thanks
to the appealing effects on catastrophic forgetting,
EWC has been widely applied in various domains,
such as game playing (Ribeiro et al., 2019), neural
machine translation (Thompson et al., 2019) and
reading comprehension (Xu et al., 2019).

However, these multi-task learning methods can-
not be directly applied to the sequential transferring
regime of deep pretrained LMs. Firstly, multi-task
learning methods require to use the data of pre-



7871

training tasks during adaptation, but the pretraining
data of LMs is often inaccessible or too large for
the adaptation. Secondly, we only care about the
downstream task’s performance, while multi-task
learning also aims to promote performance on pre-
training tasks.

In this paper, we propose a recall and learn
mechanism to cope with the forgetting problem
of fine-tuning the deep pretrained LMs. To achieve
this, we take advantage of multi-task learning by
adopting LMs pretraining as an auxiliary learning
task during fine-tuning. Specifically, we introduce
two mechanisms for the two challenges mentioned
above, respectively. As for the challenge of data
obstacles, we introduce the Pretraining Simulation
to achieve multi-task learning without accessing
to pretraining data. It helps the model recall previ-
ously learned knowledge by simulating the pretrain-
ing objective using only the pretrained parameters.
As for the challenge of learning objective differ-
ence, we introduce the Objective Shifting to bal-
ance new task learning and pretrained knowledge
recalling. It allows the model to focus gradually
on the new task by shifting the multi-task learning
objective to the new task learning.

We also provide Recall Adam (RECADAM) opti-
mizer to integrate the proposed recall and learn
mechanism into Adam optimizer (Kingma and
Ba, 2015). We release the source code of the
RECADAM optimizer implemented in PyTorch
(Paszke et al., 2019). It is easy to use and can
facilitate the NLP community for better fine-tuning
of deep pretrained LMs. Experiments on the GLUE
benchmark with the BERT-base model show that
the proposed method can significantly outperform
the vanilla fine-tuning method. Our method with
the BERT-base model can even achieve better av-
erage results than directly fine-tuning the BERT-
large model. In addition, thanks to the effectiveness
of pretrained knowledge recalling, we can initial-
ize the model with random parameters and gain
better performance with larger parameter search
space than the pretrained initialization. Finally, we
achieve state-of-the-art performance on the GLUE
benchmark with the ALBERT-xxlarge model.

Our contributions can be summarized as follows:
(1) We propose to tackle the catastrophic forgetting
problem of fine-tuning the deep pretrained LMs
by adopting the idea of multi-task learning and
obtain state-of-the-art results on the GLUE bench-
mark. (2) We propose a recall and learn mechanism

with Pretraining Simulation and Objective Shifting
to achieve multi-task fine-tuning without data of
pretraining tasks. (3) We provide the open-source
RECADAM optimizer to facilitate deep pretrained
LMs fine-tuning with less forgetting.

2 Background

In this section, we present two transfer learning
settings: sequential transfer learning and multi-task
learning. They both aim to improve the learning
performance by transferring knowledge across mul-
tiple tasks, but apply to different scenarios.

2.1 Sequential Transfer Learning
Sequential transfer learning learns source tasks and
target tasks in sequence, and transfers knowledge
from source tasks to improve the models’ perfor-
mance on target tasks.

It typically consists of two stages: pretraining
and adaptation. During pretraining, the model
is trained on source tasks with the loss function
LossS. During adaptation, the pretrained model is
further trained on target tasks with the loss func-
tion LossT. The standard adaptation methods in-
cludes fine-tuning and feature extraction. Fine-
tuning updates all the parameters of the pretrained
model, while feature extraction regards the pre-
trained model as a feature extractor and keeps it
fixed during the adaptation phase.

Sequential transfer learning has been widely
used recently, and the released deep pretrained LMs
have achieved great successes on various NLP tasks
(Peters et al., 2018; Devlin et al., 2019; Lan et al.,
2020). While the adaptation of the deep pretrained
LMs is very efficient, it is prone to catastrophic for-
getting, where the model forgets previously learned
knowledge from source tasks when learning new
knowledge from target tasks.

2.2 Multi-task Learning
Multi-task Learning learns multiple tasks simulta-
neously, and improves the models’ performance
on all of them by sharing knowledge across these
tasks (Caruana, 1997; Ruder, 2017).

Under the multi-task learning paradigm, the
model is trained on both source tasks and target
tasks with the loss function:

LossM = λLossT + (1− λ)LossS (1)

where λ ∈ (0, 1) is a hyperparameter balancing
these two tasks. It can inherently avoid catastrophic
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forgetting because the loss on source tasks LossS
is always part of the optimization objective.

To overcome catastrophic forgetting (discussed
in § 2.1), can we apply the idea of multi-task learn-
ing to the adaptation of the deep pretrained LMs?
There are two challenges in practice:

1) We cannot get access to the pretraining data to
calculate LossS during adaptation.

2) The optimization objective of adaptation is
LossT, while multi-task learning aims to op-
timize LossM, i.e., the weighted sum of LossT
and LossS.

3 Methodology

In this section, we introduce Pretraining Simulation
(§ 3.1) and Objective Shifting (§ 3.2) to overcome
the two challenges (discussed in § 2.2) respectively.
Pretraining Simulation allows the model to learn
source tasks without pretraining data, and Objec-
tive Shifting allows the model to focus on target
tasks gradually. We also introduce the RECADAM

optimizer (§ 3.3) to integrate these two mechanisms
into the common-used Adam optimizer.

3.1 Pretraining Simulation
As for the first challenge that pretraining data is
unavailable, we introduce Pretraining Simulation
to approximate the optimization objective of source
tasks as a quadratic penalty, which keeps the model
parameters close to the pretrained parameters.

Following Elastic Weight Consolidation (EWC;
Kirkpatrick et al. 2017; Huszár 2017), we approx-
imate the optimization objective of source tasks
with Laplace’s Method and assumption of indepen-
dence among the model parameters. Since EWC
requires pretraining data, we further introduce a
stronger independence assumption and derive a
quadratic penalty, which is independent of the pre-
training data. We introduce the detailed derivation
process as follows.

From the probabilistic perspective, the learning
objective on the source tasks LossS would be opti-
mizing the negative log posterior probability of the
model parameters θ given data of source tasks DS :

LossS = − log p(θ|DS)

The pretrained parameters θ∗ can be assumed
as a local minimum of the parameter space, and it
satisfies the equation:

θ∗ = argminθ{− log p(θ|DS)}

Due to the intractability, the optimization objec-
tive − log p(θ|DS) is locally approximated with
the Laplace’s Method (MacKay, 2003):

− log p(θ|DS) ≈− log p(θ∗|DS)

+
1

2
(θ − θ∗)>H(θ∗)(θ − θ∗)

where H(θ∗) is the Hessian matrix of the opti-
mization objective w.r.t. θ and evaluated at θ∗.
− log p(θ∗|DS) is a constant term w.r.t. θ, and
it can be ignored during optimization.

Since the pretrained model convergences on the
source tasks, H(θ∗) can be approximated with
the empirical Fisher information matrix F (θ∗)
(Martens, 2014):

F (θ∗) = Ex∼DS
[∇θ log pθ(x)∇θ log pθ(x)>|θ=θ∗ ]

H(θ∗) ≈ NF (θ∗) +Hprior(θ
∗)

where N is the number of i. i. d. observations in
DS , Hprior(θ

∗) is the Hessian matrix of the nega-
tive log prior probability − log p(θ).

Because of the computational intractability,
EWC approximate H(θ∗) by using the diagonal
of F (θ∗) and ignoring the prior Hessian matrix
Hprior(θ

∗):

(θ − θ∗)>H(θ∗)(θ − θ∗) ≈ N
∑

i Fi(θi − θ∗i )2

where Fi is the corresponding diagonal Fisher in-
formation value of the model parameter θi.

Since the pretraining data is unavailable, we fur-
ther approximate H(θ∗) with a stronger assump-
tion that each diagonal Fisher information value Fi
is independent of the corresponding parameter θi:

(θ − θ∗)>H(θ∗)(θ − θ∗) ≈ NF
∑

i(θi − θ∗i )2

The final approximated optimization objective
of the source tasks is the quadratic penalty between
the model parameters and the pretrained parame-
ters:

LossS = − log p(θ|DS)

≈ 1

2
(θ − θ∗)>H(θ∗)(θ − θ∗)

≈ 1

2
(θ − θ∗)>(NF (θ∗) +Hprior(θ

∗))(θ − θ∗)

≈ 1

2
N

∑
i

Fi(θi − θ∗i )2

≈ 1

2
NF

∑
i

(θi − θ∗i )2

=
1

2
γ
∑
i

(θi − θ∗i )2

where 1
2γ is the coefficient of the quadratic penalty.
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Figure 1: Objective Shifting: we replace the coefficient
λ with the annealing function λ(t). Fine-tuning and
multi-task learning can be regarded as the special cases
(k →∞ and k → 0) of our method.

3.2 Objective Shifting

As for the second challenge that the optimization
objective of multi-task learning is inconsistent with
adaptation, we introduce Objective Shifting to al-
low the objective function to gradually shift to
LossT with the annealing coefficient.

We replace the coefficient λ in the optimization
objective of multi-task learning (as shown in Eq. 1)
with the annealing function λ(t), where t refers to
the update timesteps during fine-tuning. The loss
function of our method is set to multi-task learning
with annealing coefficient:

Loss = λ(t)LossT + (1− λ(t))LossS

Specifically, to better balance the multi-task
learning and fine-tuning, λ(t) is calculated as the
sigmoid annealing function (Bowman et al., 2016;
Kiperwasser and Ballesteros, 2018):

λ(t) =
1

1 + exp(−k · (t− t0))
where k and t0 are the hyperparameters controlling
the annealing rate and timesteps.

As shown in Figure 1, at the beginning of the
training process, the model mainly learns gen-
eral knowledge by focusing more on pretraining
tasks. As training progress, the model gradually fo-
cuses on target tasks and learns more target-specific
knowledge while recalling the knowledge of pre-
training tasks. At the end of the training process,
the model completely focuses on target tasks, and
the final optimization objective is LossT.

Fine-tuning and multi-task learning can be re-
garded as special cases of our method. When
k →∞, our method can be regarded as fine-tuning.
The model firstly gets pretrained on source tasks
with the LossS, then learns the target tasks with
the LossT. When k → 0, λ(t) is a constant func-
tion, then our method can be regarded as the multi-
task learning. The model learns source tasks and
target tasks simultaneously with the loss function
1
2(LossT + LossS).

3.3 RecAdam Optimizer

Adam optimizer (Kingma and Ba, 2015) is com-
monly used for fine-tuning the deep pretrained
LMs. We introduce Recall Adam (RECADAM)
optimizer to integrate the quadratic penalty and the
annealing coefficient, which are the core factors of
the Pretraining Simulation (§ 3.1) and Objective
Shifting (§ 3.2) mechanisms respectively, by de-
coupling them from the gradient updates in Adam
optimizer.

Loshchilov and Hutter (2019) observed that L2
regularization and weight decay are not identical
for adaptive gradient algorithms such as Adam, and
confirmed the proposed AdamW optimizer based
on decoupled weight decay could substantially im-
prove Adam’s performance in both theoretical and
empirical way.

Similarly, it is necessary to decouple the
quadratic penalty and the annealing coefficient
when fine-tuning the pretrained LMs with Adam
optimizer. Otherwise, both the quadratic penalty
and annealing coefficient would be adapted by the
gradient update rules, resulting in different magni-
tudes of the quadratic penalty among the model’s
weights.

The comparison between Adam and
RECADAM are shown in Algorithm 1, where
SetScheduleMultiplier(t) (Line 11) refers to the
procedure (e.g. warm-up technique) to get the
scaling factor of the step size.

Line 6 of Algorithm 1 shows how we implement
the quadratic penalty and annealing coefficient with
the vanilla Adam optimizer. The weighted sum
of the gradient of target task objective function
∇f(θ) and the gradient of the quadratic penalty
γ(θ − θ∗) get adapted by the gradient update rules,
which derives to inequivalent magnitudes of the
quadratic penalty among the model’s weights, e.g.
the weights that tend to have larger gradients∇f(θ)
would have the larger second moment v and be



7874

Algorithm 1 Adam and RecAdam

1: given initial learning rate α ∈ R, momentum factors β1 = 0.9, β2 = 0.999, ε = 10−8, pretrained parameter vector
θ∗ ∈ Rn, coefficient of quadratic penalty γ ∈ R, annealing coefficient in objective function λ(t) = 1/(1 + exp(−k · (t−
t0)), k ∈ R, t0 ∈ N

2: initialize timestep t← 0, parameter vector θt=0 ∈ Rn, first moment vector mt=0 ← 0, second moment vector vt=0 ← 0,
schedule multiplier ηt=0 ∈ R

3: repeat
4: t← t+ 1
5: ∇ft(θt−1)← SelectBatch(θt−1) . select batch and return the corresponding gradient
6: gt ← λ(t) ∇ft(θt−1) +(1− λ(t))γ(θt−1 − θ∗)
7: mt ← β1mt−1 + (1− β1)gt . here and below all operations are element-wise
8: vt ← β2vt−1 + (1− β2)g2t
9: m̂t ← mt/(1− βt

1) . β1 is taken to the power of t
10: v̂t ← vt/(1− βt

2) . β2 is taken to the power of t
11: ηt ← SetScheduleMultiplier(t) . can be fixed, decay, or also be used for warm restarts

12: θt ← θt−1 − ηt
(
λ(t) αm̂t/(

√
v̂t + ε) +(1− λ(t))γ(θt−1 − θ∗)

)
13: until stopping criterion is met
14: return optimized parameters θt

penalized by the relatively smaller amount than
other weights.

With RECADAM optimizer, we decouple the gra-
dient of the quadratic penalty γ(θ− θ∗) and the an-
nealing coefficient λ(t) in Line 12 of Algorithm 1.
In this way, only the gradient of target task objec-
tive function ∇f(θ) get adapted during the opti-
mization steps, and all the weights of the training
model would be more effectively penalized with
the same rate (1− λ(t))γ.

Since the RECADAM optimizer is only one line
modification from Adam optimizer, it can be eas-
ily used by feeding the additional parameters, in-
cluding the pretrained parameters and a few hy-
perparameters of the Pretraining Simulation and
Objective Shifting mechanisms.

4 Experiments

4.1 Setup

Model: We conduct the experiments with the
deep pretrained language model BERT-base (De-
vlin et al., 2019) and ALBERT-xxlarge (Lan et al.,
2020).

BERT is a deep bi-directional pretrained model
based on multi-layer Transformer encoders. It is
pretrained on the large-scale corpus with two unsu-
pervised tasks: Masked LM and Next Sentence Pre-
diction, and has achieved significant improvements
on a wide range of NLP tasks. We use the BERT-
base model with 12 layers, 12 attention heads and
768 hidden dimensions (total 108M parameters).

ALBERT is the latest deep pretrained LM that
achieves state-of-the-art performance on several
benchmarks. It improves BERT by the parameter

reduction techniques and self-supervised loss for
sentence-order prediction (SOP). The ALBERT-
xxlarge model with 12 layers, 64 attention heads,
128 embedding dimensions and 4,096 hidden di-
mensions (total 235M parameters) is the current
state-of-the-art model released by Lan et al. (2020).

Data: We evaluate our methods on the Gen-
eral Language Understanding Evaluation (GLUE)
benchmark (Wang et al., 2019).

GLUE is a well-known benchmark evaluating
model capabilities for natural language understand-
ing. It includes 9 tasks: Corpus of Linguistic
Acceptability (CoLA; Warstadt et al. 2018), Stan-
ford Sentiment Treebank (SST; Socher et al. 2013),
Microsoft Research Paraphrase Corpus (MRPC;
Dolan and Brockett 2005), Semantic Textual Sim-
ilarity Benchmark (STS; Cer et al. 2017), Quora
Question Pairs (QQP),2 Multi-Genre NLI (MNLI;
Williams et al. 2018), Question NLI (QNLI; Ra-
jpurkar et al. 2016), Recognizing Textual Entail-
ment (RTE; Dagan et al. 2006; Bar Haim et al.
2006; Giampiccolo et al. 2007; Bentivogli et al.
2009) and Winograd NLI (WNLI; Levesque et al.
2011).

Following previous works (Yang et al., 2019;
Liu et al., 2019; Lan et al., 2020), we report our
single-task single-model results on the dev set of
8 GLUE tasks, excluding the problematic WNLI
dataset.3 We report Pearson correlations for STS,
Matthew’s correlations for CoLA, the “match” con-
dition (MNLI-m) for MNLI, and accuracy scores

2https://www.quora.com/q/quoradata/First-Quora-
Dataset-Release-Question-Pairs

3https://gluebenchmark.com/faq
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for other tasks.

Implementation: As discussed in § 3.3, we im-
plement the Pretraining Simulation and Objective
Shifting techniques with the proposed RECADAM

optimizer. We fine-tune the additional output layer
with the vanilla Adam optimizer, since it is ex-
cluded in the parameters of pretrained LMs. Our
methods use random initialization because of the
pretrained knowledge recalling implementation,
while vanilla fine-tuning initializes the fine-tuning
model with the pretrained parameters.

We use the data processing and evaluation script
implemented by HuggingFace Transformers li-
brary.4 We fine-tune BERT-base and ALBERT-
xxlarge model with the same hyperparameters fol-
lowing Devlin et al. (2019) and Lan et al. (2020),
except for the maximum sequence length which
we set to 128 rather than 512. For the BERT-
base model, we set the learning rate to 2e-5, use
the gradient bias correction and select the training
step (61,360 on MNLI, 56,855 on QQP, 33,890 on
QNLI, 21,050 on SST, 13,400 on CoLA, 9,000 on
STS, 11,500 on MRPC, 7,800 on RTE) to improve
the fine-tuning stability on each task (Mosbach
et al., 2020; Zhang et al., 2020b). We note that we
fine-tune on RTE, STS, and MRPC directly using
the pretrained LM while the previous works are
using an MNLI checkpoint for further performance
improvement. As for the hyperparameters of our
methods, we set γ in the quadratic penalty to 5,000,
and select the best t0 and k in {100, 250, 500,
1,000} and {0.05, 0.1, 0.2, 0.5, 1} respectively for
the annealing coefficient λ(t) on each dev set. Fol-
lowing previous works (Liu et al., 2019; Lan et al.,
2020), we report the score of 5 differently-seeded
runs for each result.

4.2 Results on GLUE

Table 1 shows the single-task single-model results
of our RECADAM fine-tuning method comparing
to the vanilla fine-tuning method with BERT-base
and ALBERT-xxlarge model on the dev set of the
GLUE benchmark. We also present the single-task
single-model results with the BERT-base model
on the test set of the GLUE benchmark in Ap-
pendix A.1, where we achieve 1.0% improvement
on average.

Results with BERT-base: With the BERT-base
model, we outperform the vanilla fine-tuning

4https://github.com/huggingface/transformers

method on 7 out of 8 tasks of the GLUE benchmark
and achieve 1.0% improvement on the average me-
dian performance.

Especially for the tasks with smaller training
data (<10k), our method can achieve significant
improvements (+1.7% on average) compared to the
vanilla fine-tuning method. Because of the data
scarcity, vanilla fine-tuning on these tasks is po-
tentially brittle and prone to overfitting and catas-
trophic forgetting problems (Phang et al., 2018;
Jiang et al., 2019). With the proposed RECADAM

method, we successfully achieve better fine-tuning
by learning target tasks while recalling the knowl-
edge of pretraining tasks.

It is interesting to find that compared to the me-
dian results with the BERT-large model, we can
also achieve better results on more than half of the
tasks (e.g., +4.0% on RTE, +0.4% on STS, +1.8%
on CoLA, +0.4% on SST, +0.1% on QQP) and
better average results (+0.5%) of all the GLUE
tasks. Thanks to the less catastrophic forgetting
realized by RECADAM, we can get better overall
performance with much fewer parameters of the
pretrained model.

Results with ALBERT-xxlarge: With the state-
of-the-art model ALBERT-xxlarge, we outperform
the vanilla fine-tuning method on 5 out of 8 tasks of
the GLUE benchmark and achieve the state-of-the-
art single-task single-model average median result
90.2% on the dev set of the GLUE benchmark.

Similar to the results with the BERT-base model,
We find that our improvements mostly come from
the tasks with smaller training data (<10k), and we
can improve the ALBERT-xxlarge model’s median
performance on these tasks by +1.5% on average.
Also, compared to the reported results by Lan et al.
(2020), we can achieve similar or better median
results on RTE (+0.1%), STS (-0.1%), and MRPC
(+1.0%) tasks without pretraining on the MNLI
task.

Overall, we outperform the average median re-
sults of the baseline with the ALBERT-xxlarge
model by 0.7%, which is lower than the im-
provement we gain with the BERT-base model
(+1.0%). With advanced model design and pretrain-
ing techniques, ALBERT-xxlarge achieves signifi-
cantly better performance on the GLUE benchmark,
which would be harder to be further improved.
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Model MNLI QQP QNLI SST Avg CoLA STS MRPC RTE Avg Avg392k 363k 108k 67k >10k 8.5k 5.7k 3.5k 2.5k <10k

BERT-base (Devlin et al., 2019) 84.4 - 88.4 92.7 - - - 86.7 - - -
BERT-base (rerun) Median 84.8 91.4 91.6 93.0 90.2 60.6 89.8 86.5 71.1 77.0 83.6
BERT-base + RecAdam Median 85.0 91.4 91.9 93.6 90.5 62.4 90.4 87.7 74.4 78.7 84.6

BERT-base (rerun) Max 84.9 91.4 92.0 93.3 90.4 61.6 89.9 88.7 71.5 77.9 84.2
BERT-base + RecAdam Max 85.3 91.6 92.1 94.0 90.8 62.6 90.6 88.7 77.3 79.8 85.3

BERT-large (Devlin et al., 2019) 86.6 91.3 92.3 93.2 90.9 60.6 90.0 88.0 70.4 77.3 84.1
XLNet-large (Yang et al., 2019) 89.8 91.8 93.9 95.6 92.8 63.6 91.8 89.2 83.8 82.1 87.4
RoBERTa-large (Liu et al., 2019) 90.2 92.2 94.7 96.4 93.4 68.0 92.4 90.9 86.6 84.5 88.9
ALBERT-xxlarge (Lan et al., 2020) 90.8 92.2 95.3 96.9 93.8 71.4 93.0 90.9 89.2 86.1 90.0
ALBERT-xxlarge (rerun) Median 90.6 92.2 95.4 96.7 93.7 69.5 93.0 91.2 87.4 85.3 89.5
ALBERT-xxlarge + RecAdam Median 90.5 92.3 95.3 96.8 93.7 72.9 92.9 91.9 89.3 86.8 90.2

ALBERT-xxlarge (rerun) Max 90.7 92.2 95.4 96.8 93.8 72.1 93.2 91.4 89.9 86.7 90.2
ALBERT-xxlarge + RecAdam Max 90.6 92.4 95.5 97.0 93.9 75.1 93.0 93.1 91.7 88.2 91.1

Table 1: State-of-the-art single-task single-model results on the dev set of the GLUE benchmark. The number
below each task refers to the number of training data. The average scores of the tasks with large training data
(>10k), the tasks with small training data (<10k), and all the tasks are reported separately. We rerun the baseline
of vanilla fine-tuning without further pretraining on MNLI. We report median and maximum over 5 runs.

Method CoLA STS MRPC RTE Avg

vanilla fine-tuning 60.6 89.8 86.5 71.1 77.0
RecAdam + PI 62.0 90.4 87.3 73.6 78.3
RecAdam + RI 62.4 90.4 87.7 74.4 78.7

Table 2: Comparison of different model initialization
strategies: pretrained initialization (PI) and Random
Initialization (RI). We report median over 5 runs.

4.3 Analysis

Model Initialization: With our RECADAM

method, the model can be initialized with random
values, and recall the knowledge of pretraining
tasks while learning the new tasks.

It is interesting to see whether the choice of ini-
tialization strategies would impact the performance
of our RECADAM method. Table 2 shows the
performance comparison of different initialization
strategies for RECADAM obtained by the BERT-
base model. It shows that RECADAM with both
initialization strategies can outperform the vanilla
fine-tuning method on all four tasks. For the target
task STS, the model with pretrained initialization
can achieve the same result as random initializa-
tion. For the other tasks (e.g., CoLA, MRPC, RTE),
the models with random initialization can achieve
better performance. It is because the randomly
initialized model can benefit from a larger param-
eter search space. By contrast, with pretrained
initialization, the search space would be limited to
around the pretraining model, making it harder for
the model to escape poor local minima and gain
better performance on the new tasks.

Forgetting Analysis: As introduced in § 3.2, we
realize multi-task fine-tuning with the Objective
Shifting technique, which allows the model’s learn-
ing objective to shift from the source tasks to the
target tasks gradually. The hyperparameter k con-
trols the rate of the objective shifting.

Figure 2 shows the learning curves of our fine-
tuning methods with different k value obtained by
BERT-base model trained on CoLA dataset. As dis-
cussed in § 3.2, Fine-tuning and multi-task learning
can be regarded as the special cases (k →∞ and
k → 0) of our method.

As shown in Figure 2a, with the larger shifting
rate k, the model can converge quickly on the target
task. As k decreases, it takes a longer time for the
model to converge on the target task because of
the slower shifting from the pretrained knowledge
recalling to target task learning.

Figure 2b shows the pretrained knowledge for-
getting during the fine-tuning process. We mea-
sure the pretrained knowledge forgetting by the
Euclidean distance between the weights of the
fine-tuning model and the pretrained model. With
vanilla fine-tuning (k → ∞), the Euclidean dis-
tance begins at zero and increases as the model
learns the target task. With a modest shifting rate k,
at the very early timesteps, the Euclidean distance
drops sharply because of the random initialization
and pretrained knowledge recalling. Then the curve
rises with the growth rate slowing down because of
the target task learning. As k decreases, thanks to
more iterations of pretrained knowledge recalling,
the model can achieve less forgetting at the end of
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Figure 2: Learning curves obtained by BERT-base model trained with different objective shifting rate k on CoLA.

the fine-tuning.
Overall, our methods provide a bridge between

fine-tuning and multi-task learning. With smaller
k, the model achieves less knowledge forgetting
from the source tasks but risks not converging com-
pletely on the target task. With a good balance
between the pretrained knowledge recalling and
new task learning, our methods can consistently
outperform the vanilla fine-tuning by not only con-
verging on target tasks but also less forgetting from
source tasks.

5 Related Works

Catastrophic forgetting has been observed as a
great challenge issue in sequential transfer learn-
ing, especially in the continuous learning paradigm
(McCloskey and Cohen, 1989; French, 1999; Good-
fellow et al., 2013; De Lange et al., 2019). Many
methods have been proposed to avoid catastrophic
forgetting (Kirkpatrick et al., 2017; Li and Hoiem,
2017; Rebuffi et al., 2017; Mallya and Lazebnik,
2018). We focus on regularization-based meth-
ods (Kirkpatrick et al., 2017; Li and Hoiem, 2017)
which recall the previous knowledge with an regu-
larization term, because they don’t require the stor-
age of the pretraining data, and are flexible on the
new tasks. Regularization-based methods can be
further divided into data-focused and prior-focused
methods. Data-focused methods regularize the
new task learning by knowledge distillation from
the pretrained model (Hinton et al., 2015; Li and
Hoiem, 2017; Zhang et al., 2020a). Prior-focused
methods regard the distribution of the pretrained pa-
rameters as prior when learning the new task (Kirk-
patrick et al., 2017; Zenke et al., 2017; Xuhong
et al., 2018; Aljundi et al., 2018). We adopted the

idea of prior-focused methods because they enable
the model to learn more general knowledge from
the pretrained parameters more efficiently. While
the prior-focused methods, such as EWC (Kirk-
patrick et al., 2017) and its variants (Schwarz et al.,
2018; Liu et al., 2018), don’t directly access to
the pretraining data, they need some pretraining
knowledge which is not available in our setting.
Therefore, we further approximate to a quadratic
penalty which is independent with the pretraining
data given the pretrained parameters.

Catastrophic forgetting in NLP has raised in-
creased attention recently (Mou et al., 2016; Arora
et al., 2019; Chronopoulou et al., 2019). Many
approaches have been proposed to overcome the
forgetting problem in various domains, such as
machine translation (Miceli-Barone et al., 2017;
Thompson et al., 2019) and reading comprehension
(Xu et al., 2019). As sequential transfer learning
widely used for NLP tasks (Howard and Ruder,
2018; Devlin et al., 2019; Liu et al., 2019; Lan
et al., 2020), previous works explore many fine-
tuning tricks to reduce catastrophic forgetting for
adaptation of the deep pretrained LMs (Howard and
Ruder, 2018; Sun et al., 2019; Zhang et al., 2019;
Chen et al., 2019; Jiang et al., 2019; Lee et al.,
2020). In this paper, we bring the idea of multi-task
learning which can inherently avoid catastrophic
forgetting, and achieve consistent improvement
with the proposed RECADAM optimizer.

6 Conclusion

In this paper, we propose to tackle the catas-
trophic forgetting in transferring deep pretrained
language models by bridging two transfer learning
paradigms: sequential fine-tuning and multi-task
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learning. To cope with the absence of pretraining
data during the joint learning of the pretraining task,
we introduce a Pretraining Simulation mechanism
to learn the pretraining task without data. Then
we introduce the Objective Shifting mechanism
to better balance the learning of the pretraining
and downstream tasks. Experiments demonstrate
the superiority of our method in transferring deep
pretrained language models, and we provide the
open-source RECADAM optimizer by integrating
the proposed mechanisms into Adam optimizer to
facilitate better usage of deep pretrained language
models.
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Model MNLI QQP QNLI SST Avg CoLA STS MRPC RTE Avg Avg392k 363k 108k 67k >10k 8.5k 5.7k 3.5k 2.5k <10k

BERT-base (Devlin et al., 2019) 84.6 71.2 90.5 93.5 85.0 52.1 85.8 88.9 66.4 73.3 79.1
BERT-base + RecAdam 85.0 71.2 91.0 94.0 85.3 55.4 85.8 88.6 70.0 75.0 80.1

Table 3: Results on the test set of the GLUE benchmark, scored by the evaluation server.5 The number below each
task refers to the number of training data. The average scores of the tasks with large training data (>10k), the tasks
with small training data (<10k), and all the tasks are reported separately. Following Devlin et al. (2019), we report
F1 scores for QQP and MRPC, Spearman correlations for STS-B, Matthew’s correlations for CoLA, and accuracy
scores for the other tasks. We submitted the best model on each dev set.

A Appendices

A.1 Test Results on GLUE Tasks
As shown in § 4.2, we report both the median and
the maximum scores over five runs for the vanilla
fine-tuning method and our RECADAM fine-tuning
method on the dev set of the GLUE benchmark.
The results with the BERT-base model show that
we outperform the baseline method by 1.0% on
the average median performance and 1.1% on the
average maximum performance.

To confirm our best model’s generalization on
the dev set, we present the single-task single-model
results with the BERT-base model on the test set
of the GLUE benchmark in Table 3. Similar to the
performance on the dev set, we achieve the same
or better results on 7 out of 8 tasks of the GLUE
benchmark and achieves 1.0% improvement on
average.

Compared to the results (+0.3% on average) on
the tasks with larger training data (>10k), we ob-
tain more significant improvement (+1.7% on aver-
age) on the tasks with smaller training data (<10k).
It is consistent with our findings on the dev results
(discussed in § 4.2), which shows the generaliza-
tion and effectiveness of the proposed RECADAM

method.

5https://gluebenchmark.com/leaderboard


